Spline regression

Patsy offers a set of specific stateful transforms (for more details about stateful transforms see Stateful transforms) that you can use in formulas to generate splines bases and express non-linear fits.

General B-splines

B-spline bases can be generated with the bs() stateful transform. The spline bases returned by bs() are designed to be compatible with those produced by the R bs function. The following code illustrates a typical basis and the resulting spline:

In [1]: import matplotlib.pyplot as plt

In [2]: plt.title("B-spline basis example (degree=3)");

In [3]: x = np.linspace(0., 1., 100)

In [4]: y = dmatrix("bs(x, df=6, degree=3, include_intercept=True) - 1", {"x": x})
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-4-6a1672cd9508> in <module>()
----> 1 y = dmatrix("bs(x, df=6, degree=3, include_intercept=True) - 1", {"x": x})

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in dmatrix(formula_like, data, eval_env, NA_action, return_type)
    289     eval_env = EvalEnvironment.capture(eval_env, reference=1)
    290     (lhs, rhs) = _do_highlevel_design(formula_like, data, eval_env,
--> 291                                       NA_action, return_type)
    292     if lhs.shape[1] != 0:
    293         raise PatsyError("encountered outcome variables for a model "

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _do_highlevel_design(formula_like, data, eval_env, NA_action, return_type)
    163         return iter([data])
    164     design_infos = _try_incr_builders(formula_like, data_iter_maker, eval_env,
--> 165                                       NA_action)
    166     if design_infos is not None:
    167         return build_design_matrices(design_infos, data,

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _try_incr_builders(formula_like, data_iter_maker, eval_env, NA_action)
     68                                       data_iter_maker,
     69                                       eval_env,
---> 70                                       NA_action)
     71     else:
     72         return None

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in design_matrix_builders(termlists, data_iter_maker, eval_env, NA_action)
    694                                                    factor_states,
    695                                                    data_iter_maker,
--> 696                                                    NA_action)
    697     # Now we need the factor infos, which encapsulate the knowledge of
    698     # how to turn any given factor into a chunk of data:

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in _examine_factor_types(factors, factor_states, data_iter_maker, NA_action)
    441     for data in data_iter_maker():
    442         for factor in list(examine_needed):
--> 443             value = factor.eval(factor_states[factor], data)
    444             if factor in cat_sniffers or guess_categorical(value):
    445                 if factor not in cat_sniffers:

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in eval(self, memorize_state, data)
    564         return self._eval(memorize_state["eval_code"],
    565                           memorize_state,
--> 566                           data)
    567 
    568     __getstate__ = no_pickling

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in _eval(self, code, memorize_state, data)
    549                                  memorize_state["eval_env"].eval,
    550                                  code,
--> 551                                  inner_namespace=inner_namespace)
    552 
    553     def memorize_chunk(self, state, which_pass, data):

/build/patsy-NWQA__/patsy-0.4.1/patsy/compat.py in call_and_wrap_exc(msg, origin, f, *args, **kwargs)
    115 def call_and_wrap_exc(msg, origin, f, *args, **kwargs):
    116     try:
--> 117         return f(*args, **kwargs)
    118     except Exception as e:
    119         if sys.version_info[0] >= 3:

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in eval(self, expr, source_name, inner_namespace)
    164         code = compile(expr, source_name, "eval", self.flags, False)
    165         return eval(code, {}, VarLookupDict([inner_namespace]
--> 166                                             + self._namespaces))
    167 
    168     @classmethod

<string> in <module>()

/build/patsy-NWQA__/patsy-0.4.1/patsy/splines.py in transform(self, x, df, knots, degree, include_intercept, lower_bound, upper_bound)
    237                   include_intercept=False,
    238                   lower_bound=None, upper_bound=None):
--> 239         basis = _eval_bspline_basis(x, self._all_knots, self._degree)
    240         if not include_intercept:
    241             basis = basis[:, 1:]

/build/patsy-NWQA__/patsy-0.4.1/patsy/splines.py in _eval_bspline_basis(x, knots, degree)
     20         from scipy.interpolate import splev
     21     except ImportError: # pragma: no cover
---> 22         raise ImportError("spline functionality requires scipy")
     23     # 'knots' are assumed to be already pre-processed. E.g. usually you
     24     # want to include duplicate copies of boundary knots; you should do

ImportError: spline functionality requires scipy

# Define some coefficients
In [5]: b = np.array([1.3, 0.6, 0.9, 0.4, 1.6, 0.7])

# Plot B-spline basis functions (colored curves) each multiplied by its coeff
In [6]: plt.plot(x, y*b);

# Plot the spline itself (sum of the basis functions, thick black curve)
In [7]: plt.plot(x, np.dot(y, b), color='k', linewidth=3);
_images/basis-bspline.png

In the following example we first set up our B-spline basis using some data and then make predictions on a new set of data:

In [8]: data = {"x": np.linspace(0., 1., 100)}

In [9]: design_matrix = dmatrix("bs(x, df=4)", data)
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-9-a9ab731d3d8f> in <module>()
----> 1 design_matrix = dmatrix("bs(x, df=4)", data)

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in dmatrix(formula_like, data, eval_env, NA_action, return_type)
    289     eval_env = EvalEnvironment.capture(eval_env, reference=1)
    290     (lhs, rhs) = _do_highlevel_design(formula_like, data, eval_env,
--> 291                                       NA_action, return_type)
    292     if lhs.shape[1] != 0:
    293         raise PatsyError("encountered outcome variables for a model "

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _do_highlevel_design(formula_like, data, eval_env, NA_action, return_type)
    163         return iter([data])
    164     design_infos = _try_incr_builders(formula_like, data_iter_maker, eval_env,
--> 165                                       NA_action)
    166     if design_infos is not None:
    167         return build_design_matrices(design_infos, data,

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _try_incr_builders(formula_like, data_iter_maker, eval_env, NA_action)
     68                                       data_iter_maker,
     69                                       eval_env,
---> 70                                       NA_action)
     71     else:
     72         return None

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in design_matrix_builders(termlists, data_iter_maker, eval_env, NA_action)
    694                                                    factor_states,
    695                                                    data_iter_maker,
--> 696                                                    NA_action)
    697     # Now we need the factor infos, which encapsulate the knowledge of
    698     # how to turn any given factor into a chunk of data:

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in _examine_factor_types(factors, factor_states, data_iter_maker, NA_action)
    441     for data in data_iter_maker():
    442         for factor in list(examine_needed):
--> 443             value = factor.eval(factor_states[factor], data)
    444             if factor in cat_sniffers or guess_categorical(value):
    445                 if factor not in cat_sniffers:

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in eval(self, memorize_state, data)
    564         return self._eval(memorize_state["eval_code"],
    565                           memorize_state,
--> 566                           data)
    567 
    568     __getstate__ = no_pickling

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in _eval(self, code, memorize_state, data)
    549                                  memorize_state["eval_env"].eval,
    550                                  code,
--> 551                                  inner_namespace=inner_namespace)
    552 
    553     def memorize_chunk(self, state, which_pass, data):

/build/patsy-NWQA__/patsy-0.4.1/patsy/compat.py in call_and_wrap_exc(msg, origin, f, *args, **kwargs)
    115 def call_and_wrap_exc(msg, origin, f, *args, **kwargs):
    116     try:
--> 117         return f(*args, **kwargs)
    118     except Exception as e:
    119         if sys.version_info[0] >= 3:

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in eval(self, expr, source_name, inner_namespace)
    164         code = compile(expr, source_name, "eval", self.flags, False)
    165         return eval(code, {}, VarLookupDict([inner_namespace]
--> 166                                             + self._namespaces))
    167 
    168     @classmethod

<string> in <module>()

/build/patsy-NWQA__/patsy-0.4.1/patsy/splines.py in transform(self, x, df, knots, degree, include_intercept, lower_bound, upper_bound)
    237                   include_intercept=False,
    238                   lower_bound=None, upper_bound=None):
--> 239         basis = _eval_bspline_basis(x, self._all_knots, self._degree)
    240         if not include_intercept:
    241             basis = basis[:, 1:]

/build/patsy-NWQA__/patsy-0.4.1/patsy/splines.py in _eval_bspline_basis(x, knots, degree)
     20         from scipy.interpolate import splev
     21     except ImportError: # pragma: no cover
---> 22         raise ImportError("spline functionality requires scipy")
     23     # 'knots' are assumed to be already pre-processed. E.g. usually you
     24     # want to include duplicate copies of boundary knots; you should do

ImportError: spline functionality requires scipy

In [10]: new_data = {"x": [0.1, 0.25, 0.9]}

In [11]: build_design_matrices([design_matrix.design_info], new_data)[0]
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-11-361a01dbd5cd> in <module>()
----> 1 build_design_matrices([design_matrix.design_info], new_data)[0]

NameError: name 'design_matrix' is not defined

bs() can produce B-spline bases of arbitrary degrees – e.g., degree=0 will give produce piecewise-constant functions, degree=1 will produce piecewise-linear functions, and the default degree=3 produces cubic splines. The next section describes more specialized functions for producing different types of cubic splines.

Natural and cyclic cubic regression splines

Natural and cyclic cubic regression splines are provided through the stateful transforms cr() and cc() respectively. Here the spline is parameterized directly using its values at the knots. These splines were designed to be compatible with those found in the R package mgcv (these are called cr, cs and cc in the context of mgcv), but can be used with any model.

Warning

Note that the compatibility with mgcv applies only to the generation of spline bases: we do not implement any kind of mgcv-compatible penalized fitting process. Thus these spline bases can be used to precisely reproduce predictions from a model previously fitted with mgcv, or to serve as building blocks for other regression models (like OLS).

Here are some illustrations of typical natural and cyclic spline bases:

In [12]: plt.title("Natural cubic regression spline basis example");

In [13]: y = dmatrix("cr(x, df=6) - 1", {"x": x})
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-13-44d89bfbd318> in <module>()
----> 1 y = dmatrix("cr(x, df=6) - 1", {"x": x})

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in dmatrix(formula_like, data, eval_env, NA_action, return_type)
    289     eval_env = EvalEnvironment.capture(eval_env, reference=1)
    290     (lhs, rhs) = _do_highlevel_design(formula_like, data, eval_env,
--> 291                                       NA_action, return_type)
    292     if lhs.shape[1] != 0:
    293         raise PatsyError("encountered outcome variables for a model "

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _do_highlevel_design(formula_like, data, eval_env, NA_action, return_type)
    163         return iter([data])
    164     design_infos = _try_incr_builders(formula_like, data_iter_maker, eval_env,
--> 165                                       NA_action)
    166     if design_infos is not None:
    167         return build_design_matrices(design_infos, data,

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _try_incr_builders(formula_like, data_iter_maker, eval_env, NA_action)
     68                                       data_iter_maker,
     69                                       eval_env,
---> 70                                       NA_action)
     71     else:
     72         return None

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in design_matrix_builders(termlists, data_iter_maker, eval_env, NA_action)
    694                                                    factor_states,
    695                                                    data_iter_maker,
--> 696                                                    NA_action)
    697     # Now we need the factor infos, which encapsulate the knowledge of
    698     # how to turn any given factor into a chunk of data:

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in _examine_factor_types(factors, factor_states, data_iter_maker, NA_action)
    441     for data in data_iter_maker():
    442         for factor in list(examine_needed):
--> 443             value = factor.eval(factor_states[factor], data)
    444             if factor in cat_sniffers or guess_categorical(value):
    445                 if factor not in cat_sniffers:

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in eval(self, memorize_state, data)
    564         return self._eval(memorize_state["eval_code"],
    565                           memorize_state,
--> 566                           data)
    567 
    568     __getstate__ = no_pickling

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in _eval(self, code, memorize_state, data)
    549                                  memorize_state["eval_env"].eval,
    550                                  code,
--> 551                                  inner_namespace=inner_namespace)
    552 
    553     def memorize_chunk(self, state, which_pass, data):

/build/patsy-NWQA__/patsy-0.4.1/patsy/compat.py in call_and_wrap_exc(msg, origin, f, *args, **kwargs)
    115 def call_and_wrap_exc(msg, origin, f, *args, **kwargs):
    116     try:
--> 117         return f(*args, **kwargs)
    118     except Exception as e:
    119         if sys.version_info[0] >= 3:

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in eval(self, expr, source_name, inner_namespace)
    164         code = compile(expr, source_name, "eval", self.flags, False)
    165         return eval(code, {}, VarLookupDict([inner_namespace]
--> 166                                             + self._namespaces))
    167 
    168     @classmethod

<string> in <module>()

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in transform(self, x, df, knots, lower_bound, upper_bound, constraints)
    679                              % (self._name,))
    680         dm = _get_crs_dmatrix(x, self._all_knots,
--> 681                               self._constraints, cyclic=self._cyclic)
    682         if have_pandas:
    683             if isinstance(x_orig, (pandas.Series, pandas.DataFrame)):

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_crs_dmatrix(x, knots, constraints, cyclic)
    363     :return: The (2-d array) design matrix.
    364     """
--> 365     dm = _get_free_crs_dmatrix(x, knots, cyclic)
    366     if constraints is not None:
    367         dm = _absorb_constraints(dm, constraints)

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_free_crs_dmatrix(x, knots, cyclic)
    337         f = _get_cyclic_f(knots)
    338     else:
--> 339         f = _get_natural_f(knots)
    340 
    341     dmt = ajm * i[j, :].T + ajp * i[j1, :].T + \

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_natural_f(knots)
     34         from scipy import linalg
     35     except ImportError: # pragma: no cover
---> 36         raise ImportError("Cubic spline functionality requires scipy.")
     37 
     38     h = knots[1:] - knots[:-1]

ImportError: Cubic spline functionality requires scipy.

# Plot natural cubic regression spline basis functions (colored curves) each multiplied by its coeff
In [14]: plt.plot(x, y*b);

# Plot the spline itself (sum of the basis functions, thick black curve)
In [15]: plt.plot(x, np.dot(y, b), color='k', linewidth=3);
_images/basis-crspline.png
In [16]: plt.title("Cyclic cubic regression spline basis example");

In [17]: y = dmatrix("cc(x, df=6) - 1", {"x": x})

# Plot cyclic cubic regression spline basis functions (colored curves) each multiplied by its coeff
In [18]: plt.plot(x, y*b);

# Plot the spline itself (sum of the basis functions, thick black curve)
In [19]: plt.plot(x, np.dot(y, b), color='k', linewidth=3);
_images/basis-ccspline.png

In the following example we first set up our spline basis using same data as for the B-spline example above and then make predictions on a new set of data:

In [20]: design_matrix = dmatrix("cr(x, df=4, constraints='center')", data)
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-20-9df37c2ea0cd> in <module>()
----> 1 design_matrix = dmatrix("cr(x, df=4, constraints='center')", data)

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in dmatrix(formula_like, data, eval_env, NA_action, return_type)
    289     eval_env = EvalEnvironment.capture(eval_env, reference=1)
    290     (lhs, rhs) = _do_highlevel_design(formula_like, data, eval_env,
--> 291                                       NA_action, return_type)
    292     if lhs.shape[1] != 0:
    293         raise PatsyError("encountered outcome variables for a model "

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _do_highlevel_design(formula_like, data, eval_env, NA_action, return_type)
    163         return iter([data])
    164     design_infos = _try_incr_builders(formula_like, data_iter_maker, eval_env,
--> 165                                       NA_action)
    166     if design_infos is not None:
    167         return build_design_matrices(design_infos, data,

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _try_incr_builders(formula_like, data_iter_maker, eval_env, NA_action)
     68                                       data_iter_maker,
     69                                       eval_env,
---> 70                                       NA_action)
     71     else:
     72         return None

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in design_matrix_builders(termlists, data_iter_maker, eval_env, NA_action)
    687         for term in termlist:
    688             all_factors.update(term.factors)
--> 689     factor_states = _factors_memorize(all_factors, data_iter_maker, eval_env)
    690     # Now all the factors have working eval methods, so we can evaluate them
    691     # on some data to find out what type of data they return.

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in _factors_memorize(factors, data_iter_maker, eval_env)
    368                 factor.memorize_chunk(state, which_pass, data)
    369         for factor in list(memorize_needed):
--> 370             factor.memorize_finish(factor_states[factor], which_pass)
    371             if which_pass == passes_needed[factor] - 1:
    372                 memorize_needed.remove(factor)

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in memorize_finish(self, state, which_pass)
    559     def memorize_finish(self, state, which_pass):
    560         for obj_name in state["pass_bins"][which_pass]:
--> 561             state["transforms"][obj_name].memorize_finish()
    562 
    563     def eval(self, memorize_state, data):

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in memorize_finish(self)
    655                 # Now we can compute centering constraints
    656                 constraints = _get_centering_constraint_from_dmatrix(
--> 657                     _get_free_crs_dmatrix(x, self._all_knots, cyclic=self._cyclic)
    658                 )
    659 

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_free_crs_dmatrix(x, knots, cyclic)
    337         f = _get_cyclic_f(knots)
    338     else:
--> 339         f = _get_natural_f(knots)
    340 
    341     dmt = ajm * i[j, :].T + ajp * i[j1, :].T + \

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_natural_f(knots)
     34         from scipy import linalg
     35     except ImportError: # pragma: no cover
---> 36         raise ImportError("Cubic spline functionality requires scipy.")
     37 
     38     h = knots[1:] - knots[:-1]

ImportError: Cubic spline functionality requires scipy.

In [21]: new_design_matrix = build_design_matrices([design_matrix.design_info], new_data)[0]
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-21-7f028eb4abe1> in <module>()
----> 1 new_design_matrix = build_design_matrices([design_matrix.design_info], new_data)[0]

NameError: name 'design_matrix' is not defined

In [22]: new_design_matrix
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-22-0e3c2d7d9308> in <module>()
----> 1 new_design_matrix

NameError: name 'new_design_matrix' is not defined

In [23]: np.asarray(new_design_matrix)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-23-440af3f34c34> in <module>()
----> 1 np.asarray(new_design_matrix)

NameError: name 'new_design_matrix' is not defined

Note that in the above example 5 knots are actually used to achieve 4 degrees of freedom since a centering constraint is requested.

Note that the API is different from mgcv:

  • In patsy one can specify the number of degrees of freedom directly (actual number of columns of the resulting design matrix) whereas in mgcv one has to specify the number of knots to use. For instance, in the case of cyclic regression splines (with no additional constraints) the actual degrees of freedom is the number of knots minus one.
  • In patsy one can specify inner knots as well as lower and upper exterior knots which can be useful for cyclic spline for instance.
  • In mgcv a centering/identifiability constraint is automatically computed and absorbed in the resulting design matrix. The purpose of this is to ensure that if b is the array of initial parameters (corresponding to the initial unconstrained design matrix dm), our model is centered, ie np.mean(np.dot(dm, b)) is zero. We can rewrite this as np.dot(c, b) being zero with c a 1-row constraint matrix containing the mean of each column of dm. Absorbing this constraint in the final design matrix means that we rewrite the model in terms of unconstrained parameters (this is done through a QR-decomposition of the constraint matrix). Those unconstrained parameters have the property that when projected back into the initial parameters space (let’s call b_back the result of this projection), the constraint np.dot(c, b_back) being zero is automatically verified. In patsy one can choose between no constraint, a centering constraint like mgcv ('center') or a user provided constraint matrix.

Tensor product smooths

Smooths of several covariates can be generated through a tensor product of the bases of marginal univariate smooths. For these marginal smooths one can use the above defined splines as well as user defined smooths provided they actually transform input univariate data into some kind of smooth functions basis producing a 2-d array output with the (i, j) element corresponding to the value of the j th basis function at the i th data point. The tensor product stateful transform is called te().

Note

The implementation of this tensor product is compatible with mgcv when considering only cubic regression spline marginal smooths, which means that generated bases will match those produced by mgcv. Recall that we do not implement any kind of mgcv-compatible penalized fitting process.

In the following code we show an example of tensor product basis functions used to represent a smooth of two variables x1 and x2. Note how marginal spline bases patterns can be observed on the x and y contour projections:

In [24]: from matplotlib import cm

In [25]: from mpl_toolkits.mplot3d.axes3d import Axes3D

In [26]: x1 = np.linspace(0., 1., 100)

In [27]: x2 = np.linspace(0., 1., 100)

In [28]: x1, x2 = np.meshgrid(x1, x2)

In [29]: df = 3

In [30]: y = dmatrix("te(cr(x1, df), cc(x2, df)) - 1",
   ....:            {"x1": x1.ravel(), "x2": x2.ravel(), "df": df})
   ....: 
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-30-cf3926d286ff> in <module>()
      1 y = dmatrix("te(cr(x1, df), cc(x2, df)) - 1",
----> 2            {"x1": x1.ravel(), "x2": x2.ravel(), "df": df})

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in dmatrix(formula_like, data, eval_env, NA_action, return_type)
    289     eval_env = EvalEnvironment.capture(eval_env, reference=1)
    290     (lhs, rhs) = _do_highlevel_design(formula_like, data, eval_env,
--> 291                                       NA_action, return_type)
    292     if lhs.shape[1] != 0:
    293         raise PatsyError("encountered outcome variables for a model "

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _do_highlevel_design(formula_like, data, eval_env, NA_action, return_type)
    163         return iter([data])
    164     design_infos = _try_incr_builders(formula_like, data_iter_maker, eval_env,
--> 165                                       NA_action)
    166     if design_infos is not None:
    167         return build_design_matrices(design_infos, data,

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _try_incr_builders(formula_like, data_iter_maker, eval_env, NA_action)
     68                                       data_iter_maker,
     69                                       eval_env,
---> 70                                       NA_action)
     71     else:
     72         return None

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in design_matrix_builders(termlists, data_iter_maker, eval_env, NA_action)
    687         for term in termlist:
    688             all_factors.update(term.factors)
--> 689     factor_states = _factors_memorize(all_factors, data_iter_maker, eval_env)
    690     # Now all the factors have working eval methods, so we can evaluate them
    691     # on some data to find out what type of data they return.

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in _factors_memorize(factors, data_iter_maker, eval_env)
    366             for factor in memorize_needed:
    367                 state = factor_states[factor]
--> 368                 factor.memorize_chunk(state, which_pass, data)
    369         for factor in list(memorize_needed):
    370             factor.memorize_finish(factor_states[factor], which_pass)

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in memorize_chunk(self, state, which_pass, data)
    555             self._eval(state["memorize_code"][obj_name],
    556                        state,
--> 557                        data)
    558 
    559     def memorize_finish(self, state, which_pass):

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in _eval(self, code, memorize_state, data)
    549                                  memorize_state["eval_env"].eval,
    550                                  code,
--> 551                                  inner_namespace=inner_namespace)
    552 
    553     def memorize_chunk(self, state, which_pass, data):

/build/patsy-NWQA__/patsy-0.4.1/patsy/compat.py in call_and_wrap_exc(msg, origin, f, *args, **kwargs)
    115 def call_and_wrap_exc(msg, origin, f, *args, **kwargs):
    116     try:
--> 117         return f(*args, **kwargs)
    118     except Exception as e:
    119         if sys.version_info[0] >= 3:

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in eval(self, expr, source_name, inner_namespace)
    164         code = compile(expr, source_name, "eval", self.flags, False)
    165         return eval(code, {}, VarLookupDict([inner_namespace]
--> 166                                             + self._namespaces))
    167 
    168     @classmethod

<string> in <module>()

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in transform(self, x, df, knots, lower_bound, upper_bound, constraints)
    679                              % (self._name,))
    680         dm = _get_crs_dmatrix(x, self._all_knots,
--> 681                               self._constraints, cyclic=self._cyclic)
    682         if have_pandas:
    683             if isinstance(x_orig, (pandas.Series, pandas.DataFrame)):

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_crs_dmatrix(x, knots, constraints, cyclic)
    363     :return: The (2-d array) design matrix.
    364     """
--> 365     dm = _get_free_crs_dmatrix(x, knots, cyclic)
    366     if constraints is not None:
    367         dm = _absorb_constraints(dm, constraints)

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_free_crs_dmatrix(x, knots, cyclic)
    337         f = _get_cyclic_f(knots)
    338     else:
--> 339         f = _get_natural_f(knots)
    340 
    341     dmt = ajm * i[j, :].T + ajp * i[j1, :].T + \

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_natural_f(knots)
     34         from scipy import linalg
     35     except ImportError: # pragma: no cover
---> 36         raise ImportError("Cubic spline functionality requires scipy.")
     37 
     38     h = knots[1:] - knots[:-1]

ImportError: Cubic spline functionality requires scipy.

In [31]: print y.shape
(100, 6)

In [32]: fig = plt.figure()

In [33]: fig.suptitle("Tensor product basis example (2 covariates)");

In [34]: for i in range(df * df):
   ....:     ax = fig.add_subplot(df, df, i + 1, projection='3d')
   ....:     yi = y[:, i].reshape(x1.shape)
   ....:     ax.plot_surface(x1, x2, yi, rstride=4, cstride=4, alpha=0.15)
   ....:     ax.contour(x1, x2, yi, zdir='z', cmap=cm.coolwarm, offset=-0.5)
   ....:     ax.contour(x1, x2, yi, zdir='y', cmap=cm.coolwarm, offset=1.2)
   ....:     ax.contour(x1, x2, yi, zdir='x', cmap=cm.coolwarm, offset=-0.2)
   ....:     ax.set_xlim3d(-0.2, 1.0)
   ....:     ax.set_ylim3d(0, 1.2)
   ....:     ax.set_zlim3d(-0.5, 1)
   ....:     ax.set_xticks([0, 1])
   ....:     ax.set_yticks([0, 1])
   ....:     ax.set_zticks([-0.5, 0, 1])
   ....: 
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-34-152045c79605> in <module>()
      1 for i in range(df * df):
      2     ax = fig.add_subplot(df, df, i + 1, projection='3d')
----> 3     yi = y[:, i].reshape(x1.shape)
      4     ax.plot_surface(x1, x2, yi, rstride=4, cstride=4, alpha=0.15)
      5     ax.contour(x1, x2, yi, zdir='z', cmap=cm.coolwarm, offset=-0.5)

ValueError: total size of new array must be unchanged

In [35]: fig.tight_layout()
_images/basis-tesmooth.png

Following what we did for univariate splines in the preceding sections, we will now set up a 3-d smooth basis using some data and then make predictions on a new set of data:

In [36]: data = {"x1": np.linspace(0., 1., 100),
   ....:         "x2": np.linspace(0., 1., 100),
   ....:         "x3": np.linspace(0., 1., 100)}
   ....: 

In [37]: design_matrix = dmatrix("te(cr(x1, df=3), cr(x2, df=3), cc(x3, df=3), constraints='center')",
   ....:                         data)
   ....: 
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-37-656e51e0f141> in <module>()
      1 design_matrix = dmatrix("te(cr(x1, df=3), cr(x2, df=3), cc(x3, df=3), constraints='center')",
----> 2                         data)

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in dmatrix(formula_like, data, eval_env, NA_action, return_type)
    289     eval_env = EvalEnvironment.capture(eval_env, reference=1)
    290     (lhs, rhs) = _do_highlevel_design(formula_like, data, eval_env,
--> 291                                       NA_action, return_type)
    292     if lhs.shape[1] != 0:
    293         raise PatsyError("encountered outcome variables for a model "

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _do_highlevel_design(formula_like, data, eval_env, NA_action, return_type)
    163         return iter([data])
    164     design_infos = _try_incr_builders(formula_like, data_iter_maker, eval_env,
--> 165                                       NA_action)
    166     if design_infos is not None:
    167         return build_design_matrices(design_infos, data,

/build/patsy-NWQA__/patsy-0.4.1/patsy/highlevel.py in _try_incr_builders(formula_like, data_iter_maker, eval_env, NA_action)
     68                                       data_iter_maker,
     69                                       eval_env,
---> 70                                       NA_action)
     71     else:
     72         return None

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in design_matrix_builders(termlists, data_iter_maker, eval_env, NA_action)
    687         for term in termlist:
    688             all_factors.update(term.factors)
--> 689     factor_states = _factors_memorize(all_factors, data_iter_maker, eval_env)
    690     # Now all the factors have working eval methods, so we can evaluate them
    691     # on some data to find out what type of data they return.

/build/patsy-NWQA__/patsy-0.4.1/patsy/build.py in _factors_memorize(factors, data_iter_maker, eval_env)
    366             for factor in memorize_needed:
    367                 state = factor_states[factor]
--> 368                 factor.memorize_chunk(state, which_pass, data)
    369         for factor in list(memorize_needed):
    370             factor.memorize_finish(factor_states[factor], which_pass)

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in memorize_chunk(self, state, which_pass, data)
    555             self._eval(state["memorize_code"][obj_name],
    556                        state,
--> 557                        data)
    558 
    559     def memorize_finish(self, state, which_pass):

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in _eval(self, code, memorize_state, data)
    549                                  memorize_state["eval_env"].eval,
    550                                  code,
--> 551                                  inner_namespace=inner_namespace)
    552 
    553     def memorize_chunk(self, state, which_pass, data):

/build/patsy-NWQA__/patsy-0.4.1/patsy/compat.py in call_and_wrap_exc(msg, origin, f, *args, **kwargs)
    115 def call_and_wrap_exc(msg, origin, f, *args, **kwargs):
    116     try:
--> 117         return f(*args, **kwargs)
    118     except Exception as e:
    119         if sys.version_info[0] >= 3:

/build/patsy-NWQA__/patsy-0.4.1/patsy/eval.py in eval(self, expr, source_name, inner_namespace)
    164         code = compile(expr, source_name, "eval", self.flags, False)
    165         return eval(code, {}, VarLookupDict([inner_namespace]
--> 166                                             + self._namespaces))
    167 
    168     @classmethod

<string> in <module>()

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in transform(self, x, df, knots, lower_bound, upper_bound, constraints)
    679                              % (self._name,))
    680         dm = _get_crs_dmatrix(x, self._all_knots,
--> 681                               self._constraints, cyclic=self._cyclic)
    682         if have_pandas:
    683             if isinstance(x_orig, (pandas.Series, pandas.DataFrame)):

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_crs_dmatrix(x, knots, constraints, cyclic)
    363     :return: The (2-d array) design matrix.
    364     """
--> 365     dm = _get_free_crs_dmatrix(x, knots, cyclic)
    366     if constraints is not None:
    367         dm = _absorb_constraints(dm, constraints)

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_free_crs_dmatrix(x, knots, cyclic)
    337         f = _get_cyclic_f(knots)
    338     else:
--> 339         f = _get_natural_f(knots)
    340 
    341     dmt = ajm * i[j, :].T + ajp * i[j1, :].T + \

/build/patsy-NWQA__/patsy-0.4.1/patsy/mgcv_cubic_splines.py in _get_natural_f(knots)
     34         from scipy import linalg
     35     except ImportError: # pragma: no cover
---> 36         raise ImportError("Cubic spline functionality requires scipy.")
     37 
     38     h = knots[1:] - knots[:-1]

ImportError: Cubic spline functionality requires scipy.

In [38]: new_data = {"x1": [0.1, 0.2],
   ....:             "x2": [0.2, 0.3],
   ....:             "x3": [0.3, 0.4]}
   ....: 

In [39]: new_design_matrix = build_design_matrices([design_matrix.design_info], new_data)[0]
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-39-7f028eb4abe1> in <module>()
----> 1 new_design_matrix = build_design_matrices([design_matrix.design_info], new_data)[0]

NameError: name 'design_matrix' is not defined

In [40]: new_design_matrix
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-40-0e3c2d7d9308> in <module>()
----> 1 new_design_matrix

NameError: name 'new_design_matrix' is not defined

In [41]: np.asarray(new_design_matrix)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-41-440af3f34c34> in <module>()
----> 1 np.asarray(new_design_matrix)

NameError: name 'new_design_matrix' is not defined