Generated on Tue Mar 24 2020 14:04:04 for Gecode by doxygen 1.8.17
aliases.hpp File Reference

Go to the source code of this file.

Namespaces

 Gecode
 Gecode toplevel namespace
 

Functions

void Gecode::atmost (Home home, const IntVarArgs &x, int n, int m, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=n\}\leq m$. More...
 
void Gecode::atmost (Home home, const IntVarArgs &x, IntVar y, int m, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y\}\leq m$. More...
 
void Gecode::atmost (Home home, const IntVarArgs &x, const IntArgs &y, int m, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y_i\}\leq m$. More...
 
void Gecode::atmost (Home home, const IntVarArgs &x, int n, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=n\}\leq z$. More...
 
void Gecode::atmost (Home home, const IntVarArgs &x, IntVar y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y\}\leq z$. More...
 
void Gecode::atmost (Home home, const IntVarArgs &x, const IntArgs &y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y_i\}\leq z$. More...
 
void Gecode::atleast (Home home, const IntVarArgs &x, int n, int m, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=n\}\geq m$. More...
 
void Gecode::atleast (Home home, const IntVarArgs &x, IntVar y, int m, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y\}\geq m$. More...
 
void Gecode::atleast (Home home, const IntVarArgs &x, const IntArgs &y, int m, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y_i\}\geq m$. More...
 
void Gecode::atleast (Home home, const IntVarArgs &x, int n, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=n\}\geq z$. More...
 
void Gecode::atleast (Home home, const IntVarArgs &x, IntVar y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y\}\geq z$. More...
 
void Gecode::atleast (Home home, const IntVarArgs &x, const IntArgs &y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y_i\}\geq z$. More...
 
void Gecode::exactly (Home home, const IntVarArgs &x, int n, int m, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=n\}=m$. More...
 
void Gecode::exactly (Home home, const IntVarArgs &x, IntVar y, int m, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y\}=m$. More...
 
void Gecode::exactly (Home home, const IntVarArgs &x, const IntArgs &y, int m, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y_i\}=m$. More...
 
void Gecode::exactly (Home home, const IntVarArgs &x, int n, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=n\}=z$. More...
 
void Gecode::exactly (Home home, const IntVarArgs &x, IntVar y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y\}=z$. More...
 
void Gecode::exactly (Home home, const IntVarArgs &x, const IntArgs &y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post constraint $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y_i\}=z$. More...
 
void Gecode::lex (Home home, const IntVarArgs &x, IntRelType r, const IntVarArgs &y, IntPropLevel ipl=IPL_DEF)
 Post lexical order between x and y. More...
 
void Gecode::lex (Home home, const BoolVarArgs &x, IntRelType r, const BoolVarArgs &y, IntPropLevel ipl=IPL_DEF)
 Post lexical order between x and y. More...
 
void Gecode::values (Home home, const IntVarArgs &x, IntSet y, IntPropLevel ipl=IPL_DEF)
 Post constraint $\{x_0,\dots,x_{n-1}\}=y$. More...
 
void Gecode::channel (Home home, const IntVarArgs &x, SetVar y)
 Post constraint $\{x_0,\dots,x_{n-1}\}=y$. More...
 
void Gecode::range (Home home, const IntVarArgs &x, SetVar y, SetVar z)
 Post constraint $\bigcup_{i\in y}\{x_i\}=z$. More...
 
void Gecode::roots (Home home, const IntVarArgs &x, SetVar y, SetVar z)
 Post constraint $\bigcup_{i\in z}\{j\ |\ x_j=i\}=z$. More...